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and Richtmyer-Meshkov instabilities
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We present an analytical model for unstable interfaces with surface tension in fluids of arbitrary viscosity.

Linear and nonlinear asymptotic solutions are obtained for growth rates of Rayleigh-Taylor and Richtmyer-
Meshkov instabilities. In Rayleigh-Taylor instability, both surface tension and viscosity decrease the
asymptotic bubble velocity. For Richtmyer-Meshkov instability, the analysis of the model suggests a depen-
dence of the decaying rate of the bubble velocity on the relative importance of viscosity and surface tension.
Results of numerical simulations are also given, and comparisons of the solutions of the model with numerical

results are in good agreement.
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Unstable fluid mixing occurs frequently in basic science
and engineering applications. A gravity-driven interfacial in-
stability is known as Rayleigh-Taylor (RT) instability [1] and
a shock-driven interfacial instability is known as Richtmyer-
Meshkov (RM) instability [2]. The RT and RM instabilities
play important roles in many fields ranging from astrophys-
ics to inertial confinement fusion. Since Rayleigh [1] and
Richtmyer [2] first considered these problems, they have re-
ceived attentions in a wide range of contexts, but many as-
pects of dynamics of the instabilities are still uncertain.

Small perturbations at these unstable interfaces grow into
nonlinear structures in the form of bubbles and spikes [3]. At
a late time, a bubble in RT instability attains a constant ve-
locity, while a RM bubble has a decaying growth rate. Even-
tually, turbulent mixing caused by vortex structures around
spikes breaks the ordered fluid motion.

The main purpose of this Rapid Communication is present
an analytical model for the unstable interfaces with surface
tension in fluids of arbitrary viscosity and find linear and
nonlinear growth rates of RT and RM instabilities for all
physical parameters. At linear and early nonlinear stages,
surface tension and viscosity effects on RT instability are
well known [4,5]: surface tension produces a cut-off wave
number and viscosity decreases the growth rate at low wave
number and causes damping of oscillatory solutions of high
wave number. However, late time nonlinear dynamics of RT
instability by surface tension and viscosity still remain un-
discovered. In the case of RM instability, little is known for
effects of these physical variables. We will show that dynam-
ics of unstable interfaces are significantly influenced by sur-
face tension and viscosity and growth rates at a late time
have different behaviors, depending on surface tension and
viscosity.

A theoretical model for comprehensive descriptions of the
motion of unstable interfaces is the potential flow model pro-
posed by Layzer [6]. The Layzer-type model was recently
extended to the system of finite density ratios using various
forms of potentials [7-11]. In this Rapid Communication, we
generalize the Layzer model to the interface with surface
tension and viscosity and present solutions for bubbles of RT
and RM instabilities from the model.
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We consider an interface, in a vertical channel of width D,
between two incompressible fluids in two dimensions. The
upper fluid is heavier than the lower fluid, i.e., p, > p;. In this
Rapid Communication, only a single-mode interface in the
channel is considered, and nonlinear mode coupling and
bubble merger, which occurs in the evolution of initial mul-
timode perturbation, are not taken into account. The kine-
matic condition and the Bernoulli equation on the interface
y=7(x,1) are

%:l+u[%?=vi, i=h,l, (1)
[p(2 +3|VP+gm) +pl=0, )

where [Q]=0,-0,,, u; and v; are the x and y components of
the interface velocity taken from the heavy and light fluids,
and g is an external acceleration. The kinematic condition
implies the continuity of the normal component of fluid ve-
locity across the interface.

The normal stress balance on the interface is given by

[p] = 2[/“‘3@};] - 0-(1_:2‘%‘)3/2 E (3)

where w is the viscosity of fluids and o the surface tension of
the interface. The Bernoulli equation (2) and the normal
stress balance [Eq. (3)] give the dynamic equation for the
interface

—[p(5 +3IVoP +en]=2[p5]l- 055w @)

The kinematic condition (1) and Eq. (4) determine the evo-
lution of the interface.
We take the velocity potentials in Goncharov [7]

d)h = al(t)cos(kx)e_ky, (5)

&= b, (t)cos(kx)e™ + by(t)y, (6)

where k=2/D is the wave number. The interface near the
bubble tip is approximated as 7= 7,(f)+ 7,(t)x>. Substituting
this expression and the potentials into Egs. (1) and (4) and
expanding up to second order in x, we have

i == k37, + 5) 70, (7)
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where

K—4Akn,—12A73
X =T 26 0

k2(4A 3)k>+6(3A-5)kpy+36A 73
2(k-67,)? ’

(1+A)k (k+6 ) (k=277,)
az = [/‘Lh(k +2 772) + My k=67, ]’

and A=(ph—p1)/(ph+p1) is the Atwood number.

We first examine the linear solutions of the model. The
zero-order equation of Eq. (4), after a linearization with re-
spect to the perturbation amplitude of the interface, becomes

i + 20K 79— (Agk = 1) 13y = 0, )

where v=(u,+u;)/(p,+p,) is an average kinematic viscosity

of fluids. For the RT instability (g=const), Eq. (9) gives an

exponential growth of the interface, 7~ 778e7' with
y=— K+ Agk + Pk — — k3. (10)

Pitpr

The growth rate [Eq. (10)] agrees with the result of the linear
theory in Bellman and Pennington [4].

The linear solution of RM instability can be obtained by
treating g as an impulsive acceleration [2], i.e., g— &(¢)Av,
where Av is the jump velocity imparted by a shock. Integrat-
ing Eq. (9) from 0— to 0+, it gives a linear growth rate of RM
instability

i0(t) = AkAv 75(0+) + 20k 75(0-) — ;o(0+)], (1)

where 7,(0-) and 7,(0+) are the preshocked and post-
shocked amplitudes of the interface, respectively. We see
from Eq. (11) that surface tension has no effect on the linear
growth rate.

We find the asymptotic solution of a bubble in RT insta-
bility. Equation (7) can be integrated analytically, and it
gives the solution for 7, in terms of 7.

(1) = [7,(0) + gJe Lm0 mO €. (12)

One may assume 7j,— % as t— o because a RT bubble keep
growing by buoyancy. Then we have

"=t (13)
From Egs. (8) and (13), we obtain the bubble velocity
Ui — = 3o+ \ sy & — 5 2 4+ 51007, (14)

where v,=pu,/p;, is the kinematic Viscosity of the heavy
fluid. Tt is found from Eq. (14) that both surface tension and
viscosity retard the asymptotic bubble velocity. The bubble
velocity is also independent to the viscosity of the light fluid.

The bubble velocity [Eq. (14)] can be expressed in non-
dimensional form

47 1 1 2A 27 1 47 1.\2
Fr=- ¥+ V& - T+ (P ) (15)

defining the Froude number Fr=U/ \fg—D, the gravity Rey-
nolds number Re=VgD3/v,, and the Bond number Bo
=p,gD?/ 0.
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FIG. 1. (Color online) Bubble Froude number Fr vs Re for Bond
numbers Bo=% and 672. The Atwood number is A=0.5.

The linear growth rate [Eq. (10)] gives a stability condi-
tion for the interface. The interface should be unstable if
surface tension is larger than a critical threshold, o=0,
=(p,—py)g/k>. For this critical surface tension, the bubble
velocity becomes

U2P == Sk, + g b + 5K, (16)

This equation shows that for the case of inviscid fluids, the
asymptotic bubble velocity is reduced by 18% by surface
tension once the interface is unstable.

Figure 1 is the bubble Froude number Fr versus Re, for
Bond numbers Bo= and 672, in the logarithmic scale. The
Atwood number is A=0.5. The Bond number Bo=67" is the
critical value for instability for A=0.5. Figure 1 shows that
the bubble velocity increases linearly with Re=< 10 and satu-
rates at Re ~ 100. We find that the asymptotic bubble veloc-
ity is decreased greatly by viscosity.

We next consider the evolution of an axisymmetric inter-
face in the cylindrical geometry. We take the potentials ¢,
=a1(t)J0(kr)e_kZ and ¢l=b1(t).]0(kr)ekz+b2(t), where Jo(.x) is
the Bessel function of zero order. After the same procedure
as the two-dimensional (2D) case, we have the equations

== k(27 + 5) 70, (17)

i+ i+ asig=—Agny +6(1+A) 27, (18)
where

K*—=4Akn,-32A73

A= T s

o =12 (5A-4)K>+16(2A-3)k n,+64A 1%
2= 8(k-87,)° ’

(1+A)k (k+877,) (k=4 77,)
a3 = [Mh(k+4772) Mg

The asymptotic solution of a RT bubble in the cylindrical
geometry is
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FIG. 2. (Color online) Bubble Froude number of RT instability
vs Atwood number for Re=1000, Bo=0, and v,/ v,=1. The solid
curve corresponds to solution (20), the dashed curve to solution
(20) for Re=%, Bo=%, and the circles to the numerical results in
Ref. [12].

ax 2Ag 3ko 422
RT_’—th"‘\/HAk 160, T K Vi (20)

Equation (20) shows that from the stability condition, the
asymptotic velocity of an axisymmetric bubble can be re-
duced within 10% by surface tension in the inviscid limit.

To validate the present model, we compare with numeri-
cal results in Ref. [12]. The numerical simulations in Ref.
[12] were conducted in a three-dimensional (3D) box geom-
etry. Because a bubble in the 3D box develops to a nearly
axisymmetric structure and the model assumes a local ap-
proximation near a bubble tip, the solution of the present
model would be comparable to the result of the 3D box
geometry. Figure 2 is the bubble Froude numbers of 3D RT
instability versus the Atwood numbers for the case of Re
=1000, Bo=, and v,/ v,=1. The solid curve corresponds to
solution (20) and the circles to the numerical results in Ref.
[12]. The dashed curve is solution (20) for Re=> and Bo
= and is given for comparison. Figure 2 shows that the
agreements between the model and the numerical results are
good overall but are better for small and large density ratios.

We compare the model with numerical results for the sys-
tem with surface tension. However, numerical results for RT
instability with surface tension are very few, especially for a
single-mode case. In fact, numerical simulations for unstable
interfaces with surface tension are much more difficult than
that without surface tension. We here perform numerical
simulations, employing the point vortex method [13]. The
vortex method follows marker particles on the interface,
computing regularized integral equations for the interface. To
overcome a stiffness of surface tension, the numerical algo-
rithm is modified to an implicit time integration, while in
Ref. [13], an explicit-Euler time integration is used.

In Fig. 3, the bubble velocity of RT instability in 2D from
the model is compared with the numerical result of the vor-
tex method, for the case of Bo=2072, Re=o0, and A=1. The
initial amplitude of the sinusoidal interface is 79k=0.2. The
number of marker particles used in the vortex simulation is
150. In the case of infinite density ratio, the vortex method
does not need a regularizing parameter 8, which acts as an
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FIG. 3. (Color online) Bubble velocity of RT instability for
Bo=2072, Re=, and A=1.

artificial viscosity, and only surface tension effects can be
observed. Figure 3 shows a good agreement of the model and
the numerical result at a late time. The agreement of the
model and the numerical result at an early time is not as
good as that at a late time. Note that the asymptotic bubble
velocity for Bo=%, Re=», and A=1 is 0.58.

We now apply the model to RM instability. For RM in-
stability, we assume that surface tension is small. A surface
tension dominated case is discussed below. For either case,
the solution of a RM bubble can be derived from Egs. (7)
and (8) with g=0. We found that the asymptotic velocity of a
RM bubble depends on a parameter g denoted as

q=4Kv, - Zk. (21)
For ¢>0 (viscosity dominant):
U, — = v, + Leoth(R4kgr). (22)
For ¢g—0:
Uiﬁ = %th + 3(3:,\4)%- (23)

Solutions (22) and (23) are obtained from the steady-state
condition 7, ——k/6. In RM instability, this steady-state as-
sumption for 7, is valid as long as 7k is large, because the
exponential term in Eq. (12) is negligible. Figure 4 shows
that the steady-state assumption for 7, is reasonable for
small surface tension cases.

For ¢>0, Eq. (22) converges to

N . Vg — 2(1+A) , [~
U—L=2kv+ g+ Lo, y=220g  (29)

The limit of this solution is negative when >0, and is zero
when o=0. We find from Eq. (24) that in the viscosity domi-
nant case, the velocity of a RM bubble decays much faster
than the inviscid case, which decays as 1/¢. Note also that, in
the case of ¢— 0, the convergence rate is the same as the
inviscid case.

The bubble velocities [Egs. (22) and (23)] can be ex-
pressed in nondimensional forms, defining the Weber num-
ber We= phU%D/ o and the Reynolds number Re=UyD/ v,
where U, is the initial velocity of the interface. Then Eq.
(22) is written as
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FIG. 4. (Color online) Bubble velocity of RM instability for two
cases of Re=200 and Re=20. The Weber number is set to We
=2000, and the Atwood number is A=0.5.
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U—-4Ly \—;Zcoth(ﬂ\féﬁ),

3 Re 3+A qg= 4(%’7)2 -z (25)

e We >
where U=U/ U, is the dimensionless velocity and 7=kUyr
the dimensionless time. Equation (23) is nondimensionalized
in a similar way.

The solution of an axisymmetric RM bubble in the cylin-
drical geometry can be found similarly as in 2D.

For ¢ >0, UL, — —kv,+ g coth(X2k\gr). (26)

O (27)

For ¢ — 0, oAk

In the cylindrical case, the parameter g is defined by
q=kv,— 2. (28)

Figure 4 is the comparison of the results for the bubble
velocity of RM instability in 2D from the present model and
full numerical simulations for two cases of Re=200 and
Re=20. The Weber number is set to We=2000, and the At-
wood number is A=0.5. The initial amplitude is 7,k=0.17r.
The values of g are 0.00081 and 0.39 for the cases of Re
=200 and Re=20, respectively. The numerical results are
obtained by employing a diffuse interface method based on a
phase-field model for two-phase incompressible fluids [14].
The computational domain is [0,27] X [0, 8], and the sinu-
soidal interface is initially located in the middle of the do-
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main. The number of grids is 100X 400. The details of nu-
merical simulations will be reported elsewhere. In Fig. 4, the
predictions of the model are in excellent agreements with the
numerical results for both cases. Figure 4 shows that for
large viscosity, the velocity of a RM bubble indeed decays
fast and goes to a negative limit.

For the surface tension dominated case (or ¢<0) in RM
instability, Eq. (8) gives the bubble velocity

U,ZQ,?,, ~— %kvh + \—gqcot(ﬁk\e"__qt) (29)

when 7, ~—k/6. This solution shows that the bubble recedes
at a late time. Equation (29) is valid, in strict sense, around
the time when the bubble amplitude reaches a maximum
because in this case 7, does not saturate to the constant limit
and varies as the bubble moves back. An oscillatory mecha-
nism that is not captured by the present model becomes in-
fluential in the time regime prior to the blow-up of Eq. (29).
Therefore, solution (29) would not be valid in the vicinity of
the time when it blows up, and does not imply that the
bubble velocity goes to infinity in a finite time.

If surface tension is dominated in RM instability, the fluid
motion near the interface at a late time should be oscillatory,
representing a capillary wave [15]. The interface would
bounce back and forth, and spikes may break up from the
interface. The reason for the oscillatory behavior is that the
interface has no external acceleration at >0 in RM instabil-
ity, and surface tension provides a restoring force to the in-
terface. It seems that higher-order equations for the present
model are needed to describe the capillary phenomena in RM
instability, and this would be a next step of the research.

In conclusion, we presented a model for unstable inter-
faces with surface tension and viscosity and found the linear
and nonlinear solutions for growth rates of single-mode RT
and RM instabilities. In RT instability, both surface tension
and viscosity slow the bubble velocity. The asymptotic
bubble velocity is reduced greatly by a large viscosity. For
RM instability, the analysis suggests a dependence of the
decaying rate of the bubble velocity on the relative impor-
tance of viscosity and surface tension, and further works
would be needed for modeling of the surface tension domi-
nated case.
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